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Multi-modal quantification of pathway
activity with MAYA

Yuna Landais1 & Céline Vallot 2,3,4

Signaling pathways can be activated through various cascades of genes
depending on cell identity and biological context. Single-cell atlases now
provide the opportunity to inspect such complexity in health and disease. Yet,
existing reference tools for pathway scoring resume activity of each pathway
to one unique common metric across cell types. Here, we present MAYA, a
computational method that enables the automatic detection and scoring of
the diversemodes of activation of biological pathways across cell populations.
MAYA improves the granularity of pathway analysis by detecting subgroups of
genes within reference pathways, each characteristic of a cell population and
how it activates a pathway. Usingmultiple single-cell datasets, we demonstrate
the biological relevance of identified modes of activation, the robustness of
MAYA to noisy pathway lists and batch effect. MAYA can also predict cell types
starting from lists of reference markers in a cluster-free manner. Finally, we
show that MAYA reveals common modes of pathway activation in tumor cells
across patients, opening the perspective to discover shared therapeutic
vulnerabilities.

The identification of cell type and function is the driving force ofmost
single-cell studies. Such approaches are based on lists of canonical
marker genes and pathway databases. Standard scRNA-seq analysis
pipelines involve steps of dimensionality reduction and clustering
before starting any marker or pathway analysis1–3, which makes the
resulting conclusions highly dependent on the chosen algorithm and
clustering parameters. In the case of cancer datasets, such clustering-
based approaches appear inadequate to identify shared transcrip-
tional programs across tumors as cancer cells tend to cluster per
patient4–9 rather than group by biological similarities. Several
approaches have emerged, bypassing dimensionality reduction and
clustering, and proposing to score pathway activity directly for indi-
vidual cells rather than for clusters. Suchpoolingof several gene-based
measurements into scores has proven extremely powerful for the
interpretation of sparse and noisy scRNA-seq datasets10,11. A recent
benchmark12 presented Pagoda213 and AUCell14 as two of the top per-
forming tools for pathway activity scoring. They are based on different
scoring methods—AUCell estimates the proportion of highly expres-
sed genes in each pathway while Pagoda2 uses the weights of the first

principal component from Principal Component Analysis (PCA)—and
each proposes a way to select significant scores. Nonetheless, both
tools compute a unique activity score per pathway for all cells,
implying that genes of a given signaling pathway should have coordi-
nated expression across cell types.

Biological evaluation of pathway activation and more recently
single-cell studies have repeatedly demonstrated the heterogeneity of
cell functions dependingon the biological context. Yetmost single-cell
studies analyze pathway activation with single scores based on gene
lists extracted from bulk data. Such curated gene lists represent the
current reference biological knowledge, that the community uses to
make biological sense of sparse and noisy scRNA-seq data. Adding
more specialized curated gene lists to databases—detailing cellular
functions according to cell identity—is ongoing but it will take some
time to be completed. To inspect existing pathway databases with
single-cell resolution, we developed MAYA (Multimodes of pathwAY
Activation), a tool that detects—for eachpathway—the differentmodes
of activation across cell types, eachmode relying on a different subset
of genes. We argue that MAYA could be a way for currently available
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biological knowledge to meet the granularity reached by single-cell
data andhelp researchersgodeeper in theirunderstandingof complex
cellular mechanisms. Particularly, in the case of cancer datasets, we
show that MAYA can detect cell type specific modes of pathway acti-
vation for both the microenvironment and tumor cells, defin-
ing common expression programs across patients, in linewith recently
identified tumor “meta-programs”15.

Results
MAYA method
MAYA enables comprehensive pathway study thanks to multimodal
scoring of gene lists in individual cells (Fig. 1). Provided a scRNA-seq
count matrix and pathway lists, MAYA detects all biologically relevant
ways to activate each pathway based on subgroups of genes and
summarizes their activity in each cell in a multimodal score matrix
(Fig. 1a). This activitymatrix can thenbeused to identify groupsof cells
sharing similar activation of provided pathways and to visualize data-
sets in lower dimensions (Fig. 1b). As a comparison, reference tools
thatmeasure pathway activity, such asAUCell14 or Pagoda213, provide a
unique activity score per pathway where MAYA can provide several.

MAYA is built on two main functions that are applied to each
provided gene list: the detection of activationmodes and the selection
of biologically relevant ones. Detection of modes is performed thanks
to a PCA on a normalized gene-cell expression matrix restricted to

pathway genes (Fig. 1a). The purpose of such decomposition of the
matrix is to find, within the pathway, genes which expression is coor-
dinated and variable across cells, and to score their activity in indivi-
dual cells. Each principal component (PC) represents a possible mode
of activation of the pathway, that is characterized by the genes that
contribute the most to the PC, and by a score that corresponds to the
cell coordinate on the PC. Each gene can contribute to several PCs and
therefore to several modes.

However, not all detected modes reflect a relevant biological
pattern in the data and some could be driven by outliers, either cells
and/or genes; this probability increases as modes explain less and less
variance in the dataset (Supplementary Fig. 1a). We thus developed a
method to assess the informativity of each mode, based on two bio-
logically interpretable criteria. First, an informative mode should be
more active in aminimal subset of cells comparedwith other cells. This
is assessed by detecting bimodal distributions of scores across cells
and checking that the group of active cells represents more than a
minimum fraction of the population. This fraction can be determined
based on previous knowledge of the underlying biology or set arbi-
trarily (Supplementary Fig. 1b–d). Second, an informativemode should
be driven by enough genes to be considered as a mode of activation
per se and not solely correspond to the expression of a single outlier
gene. To that end,wedetermined a cutoff formaximal varianceof each
gene of a mode, indicative of how much a gene can contribute on its
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Fig. 1 | MAYA overview. aMAYA takes as input a scRNA-Seq dataset and reference
gene lists, and produces as output an activity matrix, with for each cell its activity
score for each mode of every reference gene list. b Example of MAYA outputs: a
heatmap to visualize the modes of activation of reference pathways, or a Uniform

Manifold Approximation and Projection (UMAP) of the activity matrix to visualize
cells according to any annotation (activity scores for different modes, predicted
cell type or any user annotation).
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own (Supplementary Fig. 1e, f). Default cutoff value was chosen to
maximize the number ofmodes detected as informative while keeping
a high average number of genes significantly contributing to each
mode (Supplementary Fig. 1g). Thismethod is robust across single-cell
technologies, whether 10X Chromium or Smart-Seq2, as shown with a
PBMC dataset generated using both technologies16 (Supplemen-
tary Fig. 1h).

AlthoughMAYA’smainpurpose is to detectmultimodal activation
of pathways, it can also perform unimodal activity scoring to detect
cell identity from any cell marker lists. To this end, we have developed
a built-in function to leverage MAYA’s scoring and informativity
methods to annotate cells in a dataset. This approach is based on
activation of the first mode using PanglaoDB17 as input gene lists by
default (Methods). This function allows cluster-free cell type annota-
tion in a timely fashion as it annotates a dataset of around 16,000 cells
in less than 1min and 125,000 cells in ~15min (Supplementary Fig. 1i).

MAYA detects biologically relevant multimodal pathway activ-
ity in kidney
The main distinguishing feature of MAYA over existing pathway scor-
ing tools is the multimodality of its activity score, which proves useful
when studying broad pathways in complex biological systems.We first
sought to demonstrate its ability to detect cell-type specific activation
modes of hallmark pathways. For that, we ran MAYA on a dataset of
normal kidney and immune cells from Young et al.18, from which we
selected cells from five distinct subtypes for clarity (n = 1252). We used
the MSigDB Hallmark pathways19 as input gene lists, covering main
biological functions. Unsupervised clustering on the multimodal
activity matrix shows MAYA detects modes that distinguish different
cell populations (Fig. 2a). More specifically, we noticed that modes
from the same pathway were specifically activated in different cell
types. As an example, the Allograft rejection pathway presents two
modes of activation (Fig. 2b–d): (i) mode 1, driven by the expression of
CTSS and SPI1—known to have a critical role in antigen presentation20

and gene regulation during myeloid development21—and specific to
monocytes (specificity of 0.57), and (ii) mode 2, driven by CD2, CD3E
and CD3D—coding for T cell surface proteins—and by CD8A and CD8B -
coding for the CD8 antigen—and specific to CD8 T cells (specificity of
0.88). In contrast, AUCell and Pagoda2bothdescribe this pathwaywith
a single score, corresponding to an aggregation ofMAYA’smode 1 and
2, or mode 1 only respectively (Fig. 2e). Another detailed example is
shown in Supplementary Fig. 2 for the TNFA signaling via NFKB path-
way, where four activation modes were detected with MAYA based on
their bimodal activity distribution (Supplementary Fig. 2a): one spe-
cific to monocytes, one to CD8 T cells and two to endothelial cells
(Supplementary Fig. 2b–d). Interestingly, each mode involves a dif-
ferent interleukin, each specific to the population in which themode is
found tobeactive: (i) IL6ST is a signal transducer,whichdimerizeswith
IL6R and is bound for instance by IL-6, resulting in the activation of
downstream cascades in endothelial cells22, (ii) IL1B is a lymphocyte
activating factor produced by monocytes, macrophages and neu-
trophils, and (iii) IL7R is associated with T cell differentiation. Alto-
gether, we demonstrate here that MAYA identifies relevant cell-type
specific modes of pathway activation from broad reference gene lists.

To test both the stability and the ability of MAYA to detect biolo-
gically relevant signal from noisy gene lists, we added 10, 50, 100, and
200 random genes to the initial 200 genes of the pathways Allograft
rejection and TNFA signaling via NFKB; each experiment was repeated
100 times. For the Allograft Rejection pathway, the two initial activation
modes were detected for all modified gene lists with a high cell-type
specificity, whatever the level of added noise (Fig. 2f, g). These results
also show the accuracy of our selection method to detect relevant
modes, as we rarely detect additional activationmodes (corresponding
to PC3/mode 3) even when randomly increasing the reference gene
lists. Similarly, for the TNFA signaling pathway, the first threemodes are

robust to noise, with a decrease in sensitivity of detection when adding
more than 100 unrelated genes (Supplementary Fig. 2e).

MAYA detects biologically relevant multimodal pathway activ-
ity in colon
We then illustrated the relevance of the biological insight gained by
usingmultimodal pathway analysis for another tissue with a dataset of
colon and immune cells from Lee et al.23—fromwhich we selected cells
from ten distinct cell types (n = 1415)—and using theMSigDBKEGG and
REACTOME pathways24. Both analyses recover cell-type specific acti-
vationmodes, given the clusteringof cells by cell type on the heatmaps
derived from the activity matrix (Supplementary Fig. 3a, c). Focusing
on KEGG cell adhesionmolecules list, we observed thatMAYAwas able
to detect several well-known types of cell-cell adhesion processes
starting from the mixed general reference list (Fig. 3a, b and Supple-
mentary Fig. 3b): (i) mode 1 driven by the expression of HLA genes
codingMHC class IImolecules25, detected in antigen-presenting cells—
monocytes and dendritic cells—and B cells, with a specificity of 0.29,
0.27 and 0.15 respectively, (ii) mode 2 driven by the expression of
genes coding for claudins and cadherins located at tight junctions26,27,
specifically activated in epithelial cells (specificity of 0.24 and 0.16 for
enterocytes and goblet cells respectively), and (iii) mode 3 driven by
the expression of T cell membrane molecules, specific to Regulatory
T cells (specificity of 0.29).

Applying MAYA to the REACTOME pathway ion channel transport,
we were able to detect different types of ion channels and functions,
specific to each cell population (Fig. 3c, d and Supplementary Fig. 3d).
Mode 1 is specific to colon epithelial cells (specificity of 0.34 and 0.24
for enterocytes and goblet cells respectively, Fig. 3d) and corresponds
to two types of ion channels—Epithelial Sodium Channel (ENaCs) and
Na,K-ATPase28 - that have been shown to participate to the regulation of
salt and water absorption from the colon lumen29,30. In particular, acti-
vation mode 1 captures genes regulating ENaCs and their residence at
the apical membrane: SCNN1A encodes a subunit of ENaCs31, NEDD4L
participates to ENaCs ubiquitination which leads to their retrieval from
cell surface32 and SGK1 is known to phosphorylate NEDD4L product,
which decreases its binding to ENaCs33,34. Mode 4 is specific to goblet
cells only, driven by the expression of the genes CLCA1 and BEST2.
These two genes are associated with Calcium-activated Chloride
Channels (CaCCs) that have been shown to participate in epithelial
secretion35. Mode 3 is specific to pericytes and smooth muscle cells
(specificity of 0.16 and0.22 respectively) and is associatedwith Calcium
homeostasis (ATP2B4, PLN, CASQ2) and Na,K-ATPases (FXYD1, FXYD6,
ATP1A2, ATP1B2), two important channels for the membrane polariza-
tion of contractile cells. Finally,mode 2,mainly active inmonocytes and
dendritic cells (specificity of 0.33 and 0.16 respectively), involves genes
associated with acidification of intracellular organelles through colo-
calization of V-type proton ATPases36 (ATP6V1B2, ATP6AP1, ATP6V1F,
ATP6V0E1, ATP6V0D237) and Chloride channels38 (TTYH3, CLIC2), a
process necessary for phagocytosis. Altogether, as for the kidney,
starting from broad reference databases, MAYA untangles pathway
activities specific to each cell type, revealing precise cell functions.

MAYA assigns cell identity
We then leveraged MAYA’s scoring and selection ability to robustly
assign cell identity. We applied MAYA to PanglaoDB cell marker
lists and the subsets of kidney and colon datasets used previously
(Fig. 4a, d). We demonstrate that MAYA enabled an assisted and
accurate annotation of each cell in the two datasets, using the initial
cell type annotation by authors as a reference (Fig. 4b, e). We com-
pared the accuracy of our predictions with the ones obtained with two
other cell type identification methods: Cell-ID39, based on Multiple
Correspondence Analysis (MCA), and SCINA40, based on an expecta-
tion-maximization model. MAYA presents among the highest rates of
recall and precision for both datasets (Fig. 4c, f and Supplementary
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Fig. 2 | Activation modes of Hallmark pathways in kidney with MAYA.
a Heatmap of activity matrix computed on kidney dataset with MSigDB Hallmark
pathways, initial author annotation is indicated above heatmap. The two activation
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subsequentpanels, and the fourmodesof activation of TNFAsignaling viaNFKB are
further described in Supplementary Fig. 2. b Scatterplot of Mode 2 versus Mode 1
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graph. c Heatmap of scaled gene expression for top 10 contributing genes for
Mode1 (top) and Mode2 (bottom) of Allograft Rejection pathway, ordered by
decreasing contribution for each. d UMAP representation of activity matrix of
Hallmark pathways, cells are colored according to author annotation, or activity

scores of modes 1 and 2 of Allograft rejection pathway. Specificity score of cell
populations is displayed next to relevant clusters. e Heatmap of activity scores
computed by Pagoda2, AUCell andMAYA for Allograft Rejection pathway, cells are
grouped according to author annotation. f Barplot representation of the detection
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Fig. 4a, b). We finally tested the scalability of MAYA and its ability to
detect rare cell types on adatasetwith 16,815 cells fromovarian tumors6

(Supplementary Fig. 4c). Overall, MAYA had an average precision of 51%
and recall of 68%. Notably, B cells were identified with a precision and
recall of 98% when they represent only 4.9% of the dataset and endo-
thelial cells with a precision of 100% and recall of 85% when they
represent 0.2% of cells in the dataset (Supplementary Fig. 4d). Lower
precision is achieved for some types probably due to overlap between
cell type markers in PanglaoDB, such as between NK cells and T cells
(28 shared markers out of 80 and 95 markers respectively), dendritic
cells and macrophages (34 shared out of 121 and 128 markers respec-
tively), and endothelial cells and fibroblasts (13 sharedout of 187 and 171
markers respectively). All threepairs of cell types sharemoregenes than
with any other type from the PanglaoDB lists.

Furthermore, as batch effect is a main concern in single-cell ana-
lyses, we tested whether MAYA was affected by such technical biases.
We worked on a dataset containing n = 5179 cells from laryngeal
squamous cell carcinoma biopsies of two patients with a batch effect
between patients41. Using standard gene-based scRNA-seq matrix
processing, cells from the same cell types – whether cells from the
microenvironment or the tumors—indeed cluster by patient whereas
clustering on the MAYA activity matrix groups cells by cell type, with
cells from both patients within the same cluster (Fig. 4g). To quantify
the inter-patient overlap between clusters of similar cell types, we
computed the Shannon Diversity Index (SDI) for both methods as well
as for clusters obtained with the reference integration tool Harmony42

and an integration method based on Canonical Correlation Analysis43

(CCA) (Supplementary Fig. 4e). MAYA had an average SDI of 0.77
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against 0.76, 0.63, and 0.23 for the integration based on Harmony, on
CCA and the gene-based method respectively (Fig. 4h). To confirm
these observations, we compared the four methods on a pancreas
dataset containing n = 14,890 cells generated with five different single-
cell technologies44 (Supplementary Fig. 4e, f). Similarly, thegene-based

method generated technology-specific clusters whereas MAYA along
with the two other integration methods consistently mixed cells from
different technologies. In addition to pathway scoring, MAYA can
perform accurate cell type annotation independently of batch effect,
making it an all-in-one tool to address both cell identity and function.
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MAYA detects common modes of pathway activation across
cancer patients
Patient-specificity of cancer cells is currently a major limitation for the
comprehensive study of cancer scRNA-seq datasets. Cells of the
microenvironment coming from different patients can easily group
together, showing the absence of a major batch effect between sam-
ples, while tumor cells form distinct clusters4–9. Such behavior is
thought to be due in part to the genetic variations across tumor cells
from different patients, notably copy-number variations. Integration
methods, correcting for general batch effect in samples, such as
Harmony42, are not suited to deal with such cell-type specific effect.

We demonstrate here that MAYA can be an alternative to gene-
basedor integration-basedmethods to identify common transcriptional
features between cancer cells across patients. Using an ovarian cancer
dataset, we show that MAYA identifies several modes of pathway acti-
vation shared across patients (Fig. 5a–c and Supplementary Fig. 5a, b)
that are associated with known cancer hallmarks. Indeed, top specific
modes of epithelial cancer cells reflect the expression of genes asso-
ciatedwith early response to estrogen or the P53 pathway (specificity of
0.45 and 0.31 respectively), that relate to tumor growth and prolifera-
tion (Fig. 5c). Such tumor-cell specific activation would not have been
found with a classical GSEA approach (Supplementary Fig. 5c). MAYA
also identifies modes of pathway activation specific to the tumor
microenvironment, e.g a cell-type specific activation of complement
genes in macrophages (specificity of 0.24) and of angiogenesis in
cancer-associated fibroblasts (CAFs) (specificity of 0.40).

MAYA’smultimodality allows to untangle several cell-type specific
modes of activation for biological phenomena that are commonly
difficult to sort out between cell populations within the tumors and
their microenvironment. For example, MAYA detects different modes
of epithelial-to-mesenchymal transition (EMT) (Fig. 5d, e): mode
1 specific to CAFs/mesothelial cells (specificity of 0.47 and 0.36
respectively), mode 2 specific to tumor cells (specificity of 0.30) and
mode 3 tomacrophages (specificity of 0.19) (Fig. 5d).MAYA identifies a
combination of genes that characterizes EMT occurring in epithelial
cells, with LAMA3 and LAMC2 being exclusive to this cell type (Fig. 5d).
These two genes expressed by basal epithelium code for two subunits
of laminin 332, an essential component of epithelial basement mem-
brane that promotes tumor cell motility45,46. In CAFs, MAYA detects
EMT as driven mainly by genes encoding proteins from the extra-
cellular matrix (ECM) including collagens, which have been shown to
promote EMT in the tumor microenvironment directly47 or by
increasing the ECM stiffness48,49. A third mode of EMT, characterized
by the expression of the gene SPP1, is found in macrophages; macro-
phages have indeed been shown to be involved in EMT induction in
various types of cancer50–53. Twoadditionalmodes are detected but are
not as cell-type specific as the others (Supplementary Fig. 5a, max-
imum specificity scores of 0.12). Interestingly, EMT modes specific to
CAFs and to tumor cells were also detected in two other cancer

datasets (breast54 and lung55, Supplementary Fig. 5d). When evaluated
in the same cells, the ovary, breast and lung modes display high pair-
wise Pearson correlation coefficients between datasets and high cell
type specificity for both the CAF and tumor-specific modes (Supple-
mentary Fig. 5e).

MAYAalso identifies twodifferentmodes of activation of the early
estrogen response (Fig. 5f and Supplementary Fig. 6a), one specific to
tumor cells, and another specific to CAFs, consistent with the obser-
vation that CAFs can use ER-mediated signaling to promote tumor cell
proliferation56,57. MAYA also helps to untangle the respective con-
tribution of cancer cells and its microenvironment to the hemostatic
imbalance observed in cancer58,59. It detects coagulation modes with
high specificity for CAFs and mesothelial cells (0.31 and 0.32), tumor
cells (0.22) and macrophages (0.24) (Fig. 5g and Supplementary
Fig. 6b). In addition, when running MAYA with MSigDB KEGG gene
lists, we detect two modes of activation of the WNT pathway, one
specific to tumor cells and the other specific to CAFs (Fig. 5h). It is
indeed known from the literature that Wnt signaling is a complex
pathway involving β-catenin in its canonical form, but at least three
other non-canonical Wnt-mediated pathways have been proposed to
function independently of β-catenin60. One of them involves activation
of calcium/calmodulin-dependent kinase II (CamKII), protein kinase C
and phosphatase CaN (PPP3CC), and is referred to as the “Wnt Ca2+
pathway”61. Inspecting the top contributing genes of theMAYAmodes,
we observed that mode 1 contains solely genes from the canonical
WNT pathway, driven potentially by the ligand WNT7A, while mode 2
contains genes implicated in both canonical and non-canonical Wnt
Ca2+ pathway, in particular through the ligand WNT5A62,63. This
example illustrates how MAYA can untangle different ways to activate
the same biological function.

Finally, Gavish et al.15 recently proposed a method based on Non-
negative Matrix Factorization (NMF) to identify de novo tumor “meta-
programs” shared across patients (see Methods). Applied to epithelial
ovarian cancer cells (Supplementary Fig. 6c–e), this approach identi-
fies ‘meta-programs’ related to functions that were also detected by
MAYA (E2F targets, hypoxia) and others thatwere not found as specific
to tumor cells by MAYA as TNFA signaling. On the other hand, no
“meta-program” was found to be associated with estrogen response—
in contrast to MAYA—as it is activated in all tumor cells, showing the
complementarity between the two approaches, one able to detect
shared activation programs across all cells or a subset, and the other
focusing on intra-tumoral heterogeneity.

Altogether,MAYAappears extremely powerful to detectmodesof
pathway activation across tumor cells fromdifferent patients aswell as
within the microenvironment - novel combinations of genes within
known global reference gene lists. We see with these examples that
MAYA can discover refined gene lists, specific to each population,
matching the biological interpretation of pathway activation to the
granularity of the single-cell measurements. For the study of tumor

Fig. 4 | MAYA annotates cell type. a Gene-based UMAP representation of kidney
dataset, cells are colored according to author annotation. bHeatmap representing
for each author annotation (rows) the fraction of cells labeled with each MAYA
annotation (columns) for the kidney dataset. c Overlaid jitter and boxplot repre-
sentation of F1-scores for automatic annotation of the kidney dataset using Cell-ID,
SCINA andMAYA, data points are colored according to author annotation;n = 5 cell
types; Center line, median; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range; Adjusted p-values from two-sided Wilcoxon test are symbo-
lized with: *: <0.05, **: <0.01, ***: <0.001, ****: <0.0001 (pval = 0.011 for Cell-ID and
for SCINA). d Gene-based UMAP representation of colon dataset, cells are colored
according to author annotation. e Heatmap representing for each author annota-
tion (rows) the fraction of cells labeled with each MAYA annotation (columns) for
the colon dataset. f Overlaid jitter and boxplot representation of F1-scores for
automatic annotation of the colon dataset using Cell-ID, SCINA and MAYA,

data points are colored according to author annotation; n = 10 cell types; Center
line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile
range; Adjusted p-values from two-sidedWilcoxon test are not significant. g UMAP
representation of the larynx dataset, either gene-based or based on activity matrix
of PanglaoDB cell-type markers lists, cells are colored according to cell type or to
patient. h Overlaid jitter and boxplot representation of Shannon Diversity Index
(SDI), for clusters derived from gene-based dimensionality reduction, Harmony
dimensionality reduction, CCA dimensionality reduction and MAYA activity matrix
of the larynx dataset; n = 12, 11, 7, and 7 independent clusters respectively; Center
line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile
range; Adjusted p-values from two-sided Wilcoxon test are symbolized with:
*: <0.05, **: <0.01, ***: <0.001, ****: <0.0001. Adjusted p-value is 0.026 for Gene-
based relative to MAYA and non-significant for other comparisons.
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cells specifically, MAYA appears complementary to other recently
proposed methods based on the discovery of de novo consensus
transcriptomic programs.

Discussion
MAYA sorts out the different modes of pathway activation specific
to each cell type, by automatically detecting subgroups of genes
within reference pathways, and computing several scores of path-
way activation. We show that MAYA leverages existing biological
knowledge to extract cell-type specific ways of activating pathways
from single-cell datasets. In addition to pathway analysis, MAYA
performs assisted cell typing as a side function, making it an all-in-
one tool for both cell type and cell function identification. MAYA
proves particularly useful for single-cell cancer datasets, by (i)

identifying commonmodes of pathway activation across patients in
tumor cells, and also by (ii) dissecting the contribution of each
population—fibroblast, immune & tumor cell—to the activation of a
given pathway.

In comparison to previously published methods (AUCell14,
Pagoda213, ROMA64, and UCell65), MAYA provides multiple activation
scores per pathway. With MAYA, we simplified bimodal detection by
focusing on inflection points and introducing two biologically inter-
pretableparameters, easily tunable by users: (i) aminimumproportion
of cells that should activate a mode for the mode to be considered
relevant and (ii) a maximum contribution to a mode that a single gene
can have. MAYA will detect activation modes for a pathway given that
the provided datasets present both cells that activate and cells that do
not activate such pathway.

Author annotation
Epithelial cancer cells
CAF
Mesothelial cells
Endothelial cells
T cells
Plasma cells
Dendritic cells

Macrophages
Plasmacytoid dendritic cells
B cells
NK cells
Mast cells
Innate lymphoid cells

HGSOC dataset
16,815 cells
13 cell types

Patient
EOC372
EOC443

EOC540
EOC3

EOC87
EOC136

EOC1005
EOC733

EOC153
EOC349

EOC227

Author annotation

MAYA-
based

MAYA-
based

Patient

C1

C2

C3

C4

C1

C2

C3

C4

Gene-based MAYA

S
ha

nn
on

 d
iv

er
si

ty
 in

de
x

0.00

0.25

0.50

0.75

1.00

Tumor-associated 
clusters
Other clusters

C1 C3

C4 C2

HALLMARK: EPITHELIAL MESENCHYMAL TRANSITION

2edo
M

1edo
M

M
od

e3

MAYA Mode1

MAYA Mode2

MAYA Mode3

Activity Expression

0 min1 max

EMT Mode3: Macrophages

A
ct

iv
ity

A
ct

iv
ity

A
ct

iv
ity

EMT Mode1: CAF

EMT Mode2: Tumor cells

Tu
mor 

ce
lls

CAF

Mes
oth

eli
al 

ce
lls

En
do

the
lia

l c
ell

s
T c

ell
s

Pla
sm

a c
ell

s

Den
dri

tic
 ce

lls

Mac
rop

ha
ge

s

Pla
sm

ac
yto

id 
de

nd
rit

ic 
ce

lls

B ce
lls

NK ce
lls

Mas
t c

ell
s

0.47

0.36

0.30

0.19

0.12

MAYA-
based

MAYA-
based

MAYA-
based

Inn
ate

 ly
mph

oid
 ce

lls

0

1

0

1

0

1

M
od

e1
M

od
e2

M
od

e1
M

od
e2

HALLMARK: ESTROGEN RESPONSE EARLY

MAYA Mode1

MAYA Mode2

HALLMARK: COAGULATION

M
od

e1
M

od
e2

M
od

e3

MAYA Mode1

MAYA Mode2

MAYA Mode1

MAYA Mode2

MAYA Mode3

KEGG: WNT SIGNALING PATHWAY

Specificity

T cell modes

COMPLEMENT_mode2
COAGULATION_mode3

INFLAMMATORY_RESPONSE_mode2
KRAS_SIGNALING_UP_mode2

HYPOXIA_mode3

ALLOGRAFT_REJECTION_mode1
MITOTIC_SPINDLE_mode2

DNA_REPAIR_mode2
INTERFERON_GAMMA_RESPONSE_mode3

SPERMATOGENESIS_mode2

a b

c d e

f g h

CAF modes
EPITHELIAL_MESENCHYMAL_TRANSITION_mode1

ANGIOGENESIS_mode1
COAGULATION_mode1

ESTROGEN_RESPONSE_LATE_mode2
MYOGENESIS_mode1

CHOLESTEROL_HOMEOSTASIS_mode1

Tumor cell modes
ESTROGEN_RESPONSE_EARLY_mode1

APICAL_JUNCTION_mode1
P53_PATHWAY_mode1
PEROXISOME_mode1

Macrophage modes

Fig. 5 | MAYA detects pathway activation in tumors across patients. a UMAP
representation of activity matrix of Hallmark pathways, cells are colored according
to author annotation and patient. Clusters derived from activity matrix are dis-
played next to relevant groups of cells.bOverlaid jitter and boxplot representation
of Shannon Diversity Index (SDI), for clusters derived from gene-based dimen-
sionality reduction and MAYA activity matrix of the ovary dataset. Clusters corre-
sponding to tumor cells are colored in pink; n = 11 and 4 independent clusters
respectively; Center line, median; box limits, upper and lower quartiles; whiskers,
1.5× interquartile range. c Barplot representation of specificity scores of the
top5 specific modes for the four most prevalent populations in the dataset.
d Heatmap of activity scores of the three modes of the Hallmark Epithelial
Mesenchymal Transition (EMT) pathway, initial author annotation is indicated

above heatmap. Heatmap of scaled gene expression for top10 contributing genes
for the three modes of EMT, ordered by decreasing contribution. e UMAP repre-
sentation of activity matrix of Hallmark pathways, cells are colored according to
activity scores of the three EMT modes. Specificity score of cell populations is
displayed next to relevant clusters. Violin plots of activity scores for corresponding
modes, grouped by author annotation (adjusted p-values from two-sidedWilcoxon
test are symbolized with: *: <0.05, **: <0.01, ***: <0.001, ****: <0.0001). Heatmap of
the activity scores for the modes of (f) Hallmark Estrogen Response Early pathway,
(g) Hallmark Coagulation pathway and (h) KEGG Wnt pathway, cells are grouped
according to author annotation. Heatmap of scaled gene expression for top10
contributing genes for corresponding modes, ordered by decreasing contribution.
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We have also challenged the robustness to noise of our scoring
and informativity methods and showed MAYA can detect relevant
biological signal fromnoisypathway lists. It canprove veryuseful aswe
know pathway and cell markers manual curation is very time-
consuming. Here, we argue that MAYA can take as input non-curated
and potentially very exhaustive pathway or cell type lists and detect
biological signal if they contain any.

We also leveraged our methods of scoring and selection of
informative scores to propose a built-in function to annotate cells
using the first mode of activation of PanglaoDB cell type markers
lists. This method has performance results equivalent to Cell-ID39

and SCINA40, two packages specialized in cell type annotation.
MAYA is scalable to large datasets (>100,000 cells, in 15min),
unsensitive to batch effect, and is able to accurately detect and
annotate cell populations representing less than 5% of cells. How-
ever, MAYA might not be suited to annotate cell types using few
marker genes—we recommend using MAYA with lists containing at
least ten genes. In addition, for cell types which sharemanymarkers
in reference databases, users will need additional expertise to vali-
date the assisted annotation.

Finally, MAYA appears particularly useful when studying single-
cell datasets fromcancer patients that donot suffer frombatch effect
on all cell types but from patient-specificity for tumor cells. There is
currently no standard way to address this challenge for data inter-
pretation and a growing need to understand common cancer fea-
tures across patients. Recently, Gavish et al.15 provided the
community with recurrent shared transcriptional programs across
patient and tumor types by describing 41 “meta-programs” grouped
in 11 hallmarks of intra-tumor heterogeneity. These “meta-programs”
were inferred de novo by studying scRNA-seq from multiple tissues
and cancer types. This approach is very complementary to ours,
where we interrogate existing knowledge instead of performing de
novo identification. MAYA identifies common modes of activation
across tumor cells, which could be compared to such tumor meta-
programs. In addition, MAYA deciphers the respective contribution
of each cell population to the activation of a given pathway, by
defining the group of genes that drive the pathway activity in each
contributing population. Both inter and intra-patient features of
MAYA will enable the identification of shared therapeutic vulner-
abilities across patients, as well as various strategies to target them
within the tumor eco-system.

Methods
Matrix preprocessing
All countmatriceswereprocessedwith Seurat v3 toget the gene-based
cell embeddings and check the consistency of author’s annotations.
Matrices were log-normalized using scale factor 10,000. Top 2000
variable features were found using “vst” method. PCA and UMAP
were computed with default settings, using first 10 PCs for UMAP,
which constitutes the “gene-based UMAP”. For the larynx dataset, the
two datasets were read separately and merged in a unique Seurat
object of 5179 cells. The authors did not provide their annotation, so
we followed the default Seurat pipeline on each individual count
matrix, performed PCA and default clustering. We then annotated
clusters based on expression of cell type markers described in the
publication.

Detailed description of MAYA algorithm
Building count matrix. For a provided gene list, the log-normalized
CPMmatrix is subsetted to keep all cells but only genes from the list.
Rows of the matrix are then scaled so that more highly expressed
genes do not weight more than the others in the PCA that is later
performed. The sign of each principal component is then chosen to
favor the direction for which the absolute value of gene contribu-
tion is the highest. Eachmode is scaled between 0 and 1. An iterative

process then begins: we evaluate the informativity of each succes-
sive PC starting from PC1. If a PC is found uninformative, the
iteration stops, and we do not interrogate further PCs. There is
however an exception for PC1: we interrogate PC2 even if PC1 is
uninformative, as PC2 can still explain a significance part of the
variance. The final activity matrix is built by gathering all modes
from all gene lists in a single matrix with modes as rows and cells as
columns.

Informativity. For each successive mode, a density curve is drawn
from the distribution to get local maxima and minima. A bimodal
curve is expected to have at least one minimum that will be low
enough relative to its surrounding maxima on the y-axis to mark a
clear distinction between two groups of cells (difference of at least
10% of global maximum density). Only local minima with abscissa
superior to the one of the global maximum are considered and
iteratively evaluated in decreasing order as the point is to detect
extreme behaviors and activation patterns that potentially occur in
rare populations. The iteration stops when a potential minimum
meets the criteria, or none was found. As this process relies on the
detection of inflection points that depends itself on the adjustment
of the density curve to the distribution, we start with an adjustment
meant to detect global variations of distributions and if none are
detected we test a more fitted adjustment to ensure no significant
local variation was missed. Then follow two additional checks to
ensure the biological relevance of the detectedmode. First, we filter
out modes that are activated in very few cells as they could be
outliers. The user can adjust this parameter based on what he
expects to observe in the dataset or the number of cells from rarer
cell type or set it to default 5%. The second biological check is based
on the number of genes potentially contributing to the mode.
However, it is hard to set a definition of what is a contributing gene
to PCA; here we consider that contributing genes contribute more
than they would be expected i.e., if all genes from the pathway
contributed the same (1/number of genes in the pathway). Given
that pathways have various sizes, it is difficult to set a hard cutoff on
this number of genes contributing to themode. Instead, we chose to
set a cut-off on the maximum contribution of a gene to a mode. As
the sum of squared gene contributions is equal to 1, if a gene con-
tributes to up to 0.8, there is not much contribution left for other
genes to share and thismode is probably driven by this unique gene.
As a mode should represent joint expression of groups of genes, we
do not consider these monogenic modes biologically significant.
Setting a threshold of 0.4 allows to removemonogenicmodes while
keeping a relatively large number of modes with higher cell type
specificity. This parameter can also be changed by the user
depending on the tolerance to probable monogenic pathways.
Finally, we chose to test the informativity of each pathway mode in
decreasing order of variance explained in the dataset and to stop
when a mode is found uninformative after mode 2 as we know the
following will explain even less variance and is more likely to
be noise.

Predict cell type. Once the activity matrix generated, a k-Nearest
Neighbors matrix with k = 20 is computed, then an adjacency matrix
using Jaccard distance and finally transformed as a weighted graph
using igraph function graph.adjacency. Clustering is then performed
using leiden_find_partition from leidenbase package with Modular-
ityVertexPartition as partition type and a maximum number of
iterations of 2. The average activity score is computed by cell type
and by cluster. Each cluster is attributed the cell type for which the
activity score is the highest, if it passes a threshold of default value 0,
otherwise it is labeled as unassigned. This value can be modified by
the user, depending on the level of confidence needed for
annotation.
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Comparison with other tools
Pagoda2 and AUCell to compare pathway activity scoring with
MAYA. Pagoda2 was run with default settings, following the vignette.
AUCell was run using default settings, with log-normalized counts as
input. Pagoda2 and AUCell were provided the same pathway lists
as MAYA.

Cell-ID and SCINA to compare cell type prediction withMAYA. The
two tools were provided the same PanglaoDB cell type marker lists as
MAYA. Cell-ID was applied on a Seurat object following standard
procedure, computingMCA and then performing hypergeometric test
with gene lists. Each cell was attributed the cell type for which
−log10(p-value) was the highest. When the value was inferior to 2, the
cell was labeled unassigned. SCINA was run with default parameters,
except for the sensitivity cutoff that was lowered to 0.9 and rm_o-
verlap=FALSE as the input gene lists could be partially redundant.

Integration with harmony. Harmony was run through Seurat v3 with
default settings.

Integration using Canonical Correlation Analysis. CCA was per-
formed using Seurat and more specifically the functions FindInte-
grationAnchors followed by IntegrateData. This function aims at
identifying directions that account for the most co-variance between
different datasets and is another popular method to perform batch
effect correction.

GSEA. Fold change is computed using Seurat Function “FoldChange”
with default parameters and comparing the populationof interest with
all other cells from the dataset. The package fgsea was used to com-
pute the adjusted p-value of the enrichment of Hallmark pathway lists
in differentially expressed genes, setting a threshold at 0.01 for
significance.

Non-negative Matrix Factorization. We followed the method descri-
bed by Gavish et al. to first identify the intra-tumoral heterogeneity
programs in each patient individually using NMF on the subset of
tumor cells from each patient, with different ranks. Only robust pro-
grams identified with different ranks were kept. We then merged into
‘meta-programs’ the robust individual programs that share the most
similarity across patients based on their top50 genes, by taking the
union of their contributing genes.

Metrics
Statistics. AWilcoxon rank sum test is systematically used to compare
the distributions of two groups of data points and we provide a two-
sided p-value to assess the significance of the test.

Shannon Diversity Index. It measures in each predefined cluster the
diversity of cells in termsof patient identity, batch or cell type. Herewe
use it to measure the diversity of patients found in each Leiden cluster
computed on the activity matrix.

SDIc =
�1ð Þ*PN

i = 1pi*log pi

� �

log Nð Þ
ð1Þ

With c the cluster in which we compute the SDI, N the number of
different possible identities (patients in our case) and pi is the pro-
portion of cells from the cluster corresponding to identity i. SDI of 1
indicates that cells constituting the cluster come equally from all
possible identities i.e., the cluster displays high identity diversity.

Specificity metric. For a mode, we can compute for each pre-
determined cluster of cells (cells grouped by cell type in our case) a
specificity score. As the sum of scores across clusters for a mode

equals 1, the maximum value of specificity across cells reflects the
repartition of high activity scores between clusters.

Sm,c =
am,c

2

PN
p= 1am,p

2
ð2Þ

XN

p = 1

Sm,p
2 = 1 ð3Þ

With Sm,c the specificity of mode m in cluster c, am,c the average
activity score of m in c, and N the number of clusters.

We consider that specificity is significant for a cluster when it is
50% above expected value of 1/N (specificity scorewhen all cells across
all clusters have the same activity).

Precision, recall, F1-score

Precision=
TP

TP + FP
ð4Þ

Recall =
TP

TP + FN
ð5Þ

F1 score =
2*Precison*Recall
Precision+Recall

ð6Þ

Where TP is the number of true positives, FP the number of false
positives and FN the number of false negatives. F1-score of 1 means
perfect precision and recall.

Matching PanglaoDB cell types with author annotation for pre-
cision and recall assessment
To assess precision and recall of cell-type annotation tools, we had to
find equivalents of cell types described by authors in the PanglaoDB
and chose the closest type ormultiple types when PanglaoDB included
several subtypes.

Kidney. Monocytes=c(“Monocytes”), Endothelial cells=c(“Endothelial
cells”), Mesangial_cells=c(“Mesangial cells”,“Smooth muscle cells”),
Podocytes=c(“Podocytes”), TCD8 = c(“T cells”,“T memory cells”, “T
cytotoxic cells”).

Colon. ‘Mature Enterocytes’=c(“Enterocytes”), ‘Goblet cells’=c(“Goblet
cells”), Pericytes=c(“Pericytes”), ‘Smooth muscle cells’=c(“Smooth
muscle cells”), cDC=c(“Dendritic cells”), Proliferating monocytes=
c(“Monocytes”,“Macrophages”), ‘NK cells’=c(“NK cells”,“Natural killer
T cells”), ‘Regulatory T cells’=c(“T regulatory cells”,“T cells”,“Tmemory
cells”), ‘CD19 +CD20+B’ = c(“B cells”,“B cells naive”,“B cellsmemory”),
‘Mast cells’=c(“Mast cells”).

Performances. All tests were run with CPU: 6 cores/12 threads@
2.6 GHz.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Kidney dataset: The count matrices were downloaded from Supple-
mentary data S1 fromYounget al. [https://www.science.org/doi/suppl/
10.1126/science.aat1699/suppl_file/aat1699_datas1.gz.zip]. Colon data-
set: Raw countmatrix and cell annotations were downloaded from the
NCBI Gene Expression Omnibus (GEO) database under the accession
code GSE144735 for the KUL3 cohort. Ovary dataset: Count data were
downloaded from the NCBI Gene ExpressionOmnibus (GEO) database
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with accession code GSE165897. Larynx dataset: Count data were
downloaded from the NCBI Gene ExpressionOmnibus (GEO) database
with accession code GSE150321. Pancreas dataset: A Seurat object was
directly loaded from the package SeuratData [https://github.com/
satijalab/seurat-data] (panc8 v3.0.2). Breast dataset: Count matrix and
metadata the dataset fromQian et al were retrieved fromhttps://www.
weizmann.ac.il/sites/3CA/breast as formatted by Gavish et al [https://
www.dropbox.com/sh/nbx7v3om85wkfoq/AACpeZEZ4RNQwMW37Q
7AHxExa?dl=1]. Lung dataset: Count matrix and metadata the dataset
from Kim et al were retrieved from https://www.weizmann.ac.il/sites/
3CA/lung as formatted by Gavish et al [https://www.dropbox.com/sh/
byext689ffg77pj/AACp5jI2RRxndurKn2B0T-VWa?dl=1]. PBMC data-
set: A Seurat object was directly loaded from the package SeuratData
[https://github.com/satijalab/seurat-data] (pbmcsca v3.0.0). Refer-
encedatabases: PanglaoDBwasdownloaded from thewebsite (https://
panglaodb.se/) [https://panglaodb.se/markers/PanglaoDB_markers_
27_Mar_2020.tsv.gz]. MSigDB gene lists (Hallmark, KEGG and REAC-
TOME) were downloaded from the Broad Institute website (http://
www.gsea-msigdb.org/gsea/msigdb/collections.jsp) [https://data.
broadinstitute.org/gsea-msigdb/msigdb/release/7.4/h.all.v7.4.
symbols.gmt, https://data.broadinstitute.org/gsea-msigdb/msigdb/
release/7.4/c2.cp.kegg.v7.4.entrez.gmt, https://data.broadinstitute.
org/gsea-msigdb/msigdb/release/7.4/c2.cp.reactome.v7.4.symbols.
gmt] in their version 7.4. Source data are provided with this paper.

Code availability
MAYA is available as anR package onGitHub [https://github.com/One-
Biosciences/MAYA/] and Zenodo [https://doi.org/10.5281/zenodo.
7689013]66. Requires R > = 4.0.5. Code for reproducing data analysis
and plots is available at [https://github.com/One-Biosciences/MAYA-
figures/]. Open Access MAYA is available on GitHub at https://github.
com/One-Biosciences/MAYA/ and licensed byOneBiosciences under a
GNU Affero General Public Licence v3.0. To view a copy of this license,
visit https://www.gnu.org/licenses/agpl-3.0-standalone.html. Source
data are provided with this paper.
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